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Stochastic synchronization in globally coupled phase oscillators
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Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear
diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an
intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation
is entrained to the external periodic force in an intermediate range of noise strength. These enhancement
phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic
resonance and stochastic synchronization in globally coupled systems.
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INTRODUCTION tion, and the stochastic behaviors for each element are aver-
aged out in the description of the order parameter. The

Recently, various noise effects for nonlinear systems haveesonant response and the synchronization to a periodic force
been studied. In stochastic resonance, the response ofage more clearly shown in this deterministic system.
bistable system or an excitable system to a periodic force is
enhanced with the addition of noise. The stochastic reso- STOCHASTIC RESONANCE IN GLOBALLY COUPLED
nance improves signal detection by the superposed noise BISTABLE SYSTEMS
[1-3]. Noise-enhanced frequency locking is observed in sto- _ i _
chastic bistable systems driven by a relatively strong peri- At first, we consider a globally coupled bistable system.
odic force or a chaotic signal and phase diagrams similar t&ach phase oscillator evolves according to an equation
the Arnold tongues are obtaingd—6]. Noise induced en- do
trainment among coupled oscillators is found experimentally —— = —Dsin2¢—csinwgt Sing, (1
in Belousov-Zhabotinsky reactions and brain way@és]. dt
Stochastic resonance has been studied also in globally or ) ) -
locally coupled systems of many bistable elements and it wa¥here ¢ is the phase of the oscillatd, and ¢ are positive
shown that the coupling can lead to the enhancement of thgPnstants, ando, is the frequency of the periodic force.
responsg9—12]. Various types of Fokker-Planck equations There are two stationary solution$;=0 and. If the coef-
have been used to study the stochastic resonance theordtfient of the second term on the right-hand side is not tem-
cally. porally periodic asc sinwgt but constantcy, the two solu-

On the other hand, various types of collective dynamics irfions are bistable fofco|<2b. In that case, the dynamical
globally coupled oscillators have been studié8,14. Glo- ~ System has a potential functiot)(¢)=—(b/2)cos 2)
bally coupled phase oscillators under external noises can beCoC0S¢, and the solutiony)=0 has a lower potential for
studied with a nonlinear diffusion equation for the numberCo>0 and a higher potential far,<O than the solutionp
density. The nonlinear diffusion equation is obtained from= . Amodel of a globally coupled system with a noise term
the mean field approximation of the Fokker-Planck equatiortS Written as
for the N oscillators, which is considered to be correct in the

. . . : K

globally coupled system in the limK— o [13]. The nonlin- % — hai o A

ear diffusion equation for the globally coupled phase oscil- dt bsin2¢; = sinwot sind, N

lators can be transformed into coupled nonlinear equations N

for the Fourier amplitudes of the number density. The nu- Y '

merical simulation of the coupled nonlinear equations for the ijl Sin(i = )+ &, 2

Fourier modes is relatively easy. Various nonequilibrium

phase transitions were found in the globally coupled phas@mhereN is the total number of elements, and the second term
oscillators using the numerical simulation of the coupledon the right-hand side represents the periodically forcing
equations for the Fourier modes and their bifurcation analyterm and the third term represents mutual coupling, and the

sis[15]. last term represents Gaussian white noise characterized by
In this paper, we study an extended model of the coupled
phase oscillators, in which an external periodic force is (&(1)=0, (&(1)§(t"))=2Dg;o(t—t"),

added to the model studied in R¢L5]. Each element may

exhibit stochastic resonance and stochastic synchronizatiomhereD represents noise strength. The mean field treatment
however, we study dynamical behaviors of the order paramholds exactly in the limit oN—o. The normalized number
eter. The nonlinear diffusion equation is a deterministic equaeensity defined by
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We have performed numerical simulation of E4). retaining
the first 50 modes with the Runge-Kutta method of time step 0.04
At=0.0001. The order parameter is expressed as

N

r= (NS, &= | dsenton=p w001

-0.04

In this model, the order parameter takes a real value, that is,

Im p;(t)=0. Figure 1 displays three time evolutions @ft) 008 o 100 150 200
atD=0.4, 0.57, and 1 fob=0.2,¢c=0.05, wy=0.3, andK t

=1. The order parameter is regularly oscillating with the . ]

frequencyw, of the external force. The average value of the_ FIG- 1. Time evolutions otr(t) by Eq.(4) at (@) D=0.4, (b)
order parameter takes a nonzero valu®at0.4 and zero at ©~0-57, and©) D=1 for b=0.2,¢=0.05,w(=0.3, andK =1.
D=0.57 and 1. The amplitude of the periodic oscillation is
maximum atD=0.57. We have calculated the average val-
ues(o) of the order parameter and the temporal fluctuations

around the average valud]so(t)]?)Y? where So(t) Next, we consider a globally coupled oscillator system.
=0 (t)— (o). The results are shown in Fig. 2. The averageEach phase oscillator is assumed to obey an equation
values of order parameters take nonzero valueDferD,

~0.56. This is a kind of symmetry breaking phase transition d_¢_
induced by noises. The amplitude of the periodic oscillation dt
of the order parameter takes a maximum near the phase tran-

sition point. The response function to the periodic modulawhere¢ is the phase of the oscillatan, b, andc are positive

tion becomes large in an intermediate range of the noiseonstants, ana, is the frequency of the periodic force. If
strength. This is interpreted as a kind of stochastic resonandge=b=0, this equation describes a simple phase rotator,
in this globally coupled bistable system. A phase transition irsince the solution isp=wt, where w is the natural fre-

a globally coupled bistable system without a periodic forcequency. Ifc=0, andb#0 butb<w, d¢/dt is not constant
and the enhancement of the susceptibility to a weak periodibut always takes a positive value, and this equation describes
force was discussed in Refg], [10]. We have found that a still a phase rotator. The natural frequency of the oscillator is
kind of phase transition occurs even for nonzero amplitudgjiven by /w?—b?. Whenc=0 andb< w buth s close tow,

of periodic modulation. the oscillator behaves like the relaxation oscillati@nmay

STOCHASTIC SYNCHRONIZATION IN GLOBALLY
COUPLED OSCILLATORS

w—(b+csinwgt)sing, (5)
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be suitable to call it relaxation oscillation of phasgince the
phase motion is clearly separated into fast motion and very
slow motion near¢p=m/2+2n7 (n is an integer. On the
other hand, whem<b andc=0, the equation has a stable

stationary solution given byp=sin }(w/b) and all trajecto- ] (a)
ries are attracted to the stable pointcH 0, andb> w butb ' '
is close tow, the system behaves like an excitable system, Reo
since one-cycle rotation is excited by some small perturba- 0.5
tion to the stationary state. The paramdteis a parameter
which determines a transition from an excitable system to an
oscillatory system, and=b.= w is the threshold value. The or
parametric perturbatiob+ ¢ sinwgt implies that the effec-
tive threshold value is periodically modulated. lllumination 05 | 1
can control the threshold in an experiment of light-sensitive
Belousov-Zhabotinksy reaction. The noise entrainment was ] ! . .
observe_d by controlling the illuminatiofi7]. The penodl_c _ 0 100 200 300 400
modulation in our model may be related to the periodic ®) t
modulation of the threshold value in experimental systems. 1 . .
A model of a globally coupled system with a noise term is Reo
written as
0.5
N
%:w—(bJrcsinwot)sind)i—EZ sin( ¢ — i) + &, o1
dt N=1 !
6) 05 -
whereN is the total number of elements, and the third term -1 1 L L
represents mutual coupling, and the last term represents 0 100 200 300 400
Gaussian white noise characterized by ] (c) t
1 1 1
Re o
(&(1))=0, (&(D)¢(t"))=2Dg;s(t—t"). 05
A coupled phase oscillator model similar to this equation was 0
studied by Kimet al. [16]. In their model, time delay was
further assumed. In their system with time delay, there are
multistable states, i.e., fast and slow synchronized states and 05
a desynchronized state. They studied noise induced transi-
tions among the multistable states in one oscillator system -1 L L L
and a coupled system of ten oscillators. We do not consider 0 100 200 300 400

such time delay effect and study the stochastic synchroniza- t

tion using a nonlinear diffusion equation for a coupled sys- FIG. 3. Time evolutions ob(t) by Eq.(8) at (a) D=0.04, (b)
tem in the limit N—. The normalized number density D=0.08, and(c) D=0.12 forb=1, ¢=0.02, w=1.005, wy=0.3,
obeys andK=1.
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FIG. 4. (a) Frequencyw of the order parameter oscillation @sfor b=1, c=0.02, 0= 1.005,wy= 0.3, andK = 1. (b) Fourier amplitude
A=(1/T)|fgdt(r(t)exp(—iw0t)| vs D. (c) Phase diagram for the entrainmentdRD plane. The entrainment is observed in the parameter
range surrounded by two curves.

J J _ _ the order parameter as a function®ffor o =1.005,K=1,
(o)== %‘ w—(b+csinwgt)sing b=1, w,=0.3, andc=0.02. The frequency was calculated
from the rotation number dfRea(t),Im o(t)) around the ori-
- gin (0, 0. The frequency of the order parameter increases
—Kf do’' sin(p— ' )n(’,t) i n(P,t) with the noise strengtiD. It can be understood from the
- dynamical behavior of each oscillator. Each oscillator be-
P haves like the relaxation oscillation and the phase motion
+D——=n(,t). (7) becomes slow neath=w/2+2n7 when D=0, since w
d ~b. An effect of noises is to make the regular slow motion
) ) ) . _randomly faster, and then the average frequency increases
The corresponding coupled ordinary differential equationsyith the noise strength. The periodic modulation is further

are written as applied. The frequency entrainment is observed between
0.058<D<0.094. This is a kind of the stochastic synchroni-
dpm zation, although the motion of the order parameter is not

—=m{(K/2 1= p- +(b
dt M(KI2)(p1pm-17P-1Pm: ) F( stochastic. Figure () displays the Fourier amplitude of the

order parameter motion with frequencw,, that is,
(1/M)| S {dta(t)exp(—iwgt)|. The Fourier amplitude takes a

(80  maximum in the parameter range where the stochastic syn-

chronization is observed. Figurgct displays a parameter

We have performed numerical simulation of E8). retaining  region in theK-D parameter space, in which the synchroni-
the first 50 modes with the Runge-Kutta method of time stefration is observed. This phase diagram seems to be the Ar-
At=0.0005. In this model, the order parameterp_; isa  nold tongues discussed [id—6], however, the ordinate is not
complex variable. Figure 3 displays three time evolutions ofthe amplitudec of the periodic forcing but the coupling con-
Reo(t) at D=0.04, 0.08, and 0.12 favp=1.005,K=1, wg  stantK, so the meaning is different. For a fixed value of
=0.3, andc=0.02. The order parameter is entrained to thenoise strength, the coupling constant also needs to take an
external periodic force &b =0.08. However, the motion of intermediate value for the stochastic synchronization to ap-
the order parameter is not completely entrained to the peripear, as shown in this figure. Too large coupling constant
odic force atb=0.04 and 0.12, and quasiperiodic motions makes the distribution of the number density too narrow, and
appear. Figure (@) displays the frequency of the motion of  noise effects are effectively reduced.

+Csinwet)/2(pm—1—pm+1)}— (iMoo + sz)pm-
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Even for a parameter range<b—c, in which each el- We have shown numerical results for parametrically per-
emental system is purely excitable. However, noises inducturbed system, but we have also studied an additively per-
phase slips and the oscillation is observed on an averagtrbed model,

When the periodic force is further applied, the stochastic dé K N
synchronization can occur. We have performed a numerical =i _ —bsind +c sinodt— — Sin( b — b )+ &
simulation foro=0.97,b=1, K=2, w,=0.3, andc=0.02. dat * N, M@t ™y 121 (=) *éi

Figure 5a) displays the frequency of the motion of the order

parameter as a function &. The frequency entrainment is and another type of forced model,

observed for 0.245 D <0.305. Figure &) displays the Fou-

rier amplitude of the order parameter motion with frequency de; _ . K
wo=0.3. The Fourier amplitude also has a maximum in an gt ~ebsingi—csin(éi—wdt) —
intermediate value of noise strength.

N
SUMMARY ngl Sin(¢i— ¢j) +¢&; .

To summarize, we have proposed globally coupled phase
oscillator models and performed numerical simulations ofWe have observed similar stochastic synchronization also in
the corresponding nonlinear diffusion equations for the numthese systems. It does not seem to depend on the detailed
ber density. The response to the periodic force becomes larderm of periodic forcing. The stochastic synchronization may
in an intermediate range of noise strength. It can be interbe found in many systems driven by noises and periodic
preted as a stochastic resonance or a stochastic synchronifarcing, if the parameter for each element is near a transition
tion, although the motion of the order parameter is regularpoint between an excitable state and an oscillatory state.
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