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Stochastic synchronization in globally coupled phase oscillators
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Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear
diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an
intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation
is entrained to the external periodic force in an intermediate range of noise strength. These enhancement
phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic
resonance and stochastic synchronization in globally coupled systems.
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INTRODUCTION

Recently, various noise effects for nonlinear systems h
been studied. In stochastic resonance, the response
bistable system or an excitable system to a periodic forc
enhanced with the addition of noise. The stochastic re
nance improves signal detection by the superposed n
@1–3#. Noise-enhanced frequency locking is observed in s
chastic bistable systems driven by a relatively strong p
odic force or a chaotic signal and phase diagrams simila
the Arnold tongues are obtained@4–6#. Noise induced en-
trainment among coupled oscillators is found experiment
in Belousov-Zhabotinsky reactions and brain waves@7,8#.
Stochastic resonance has been studied also in globall
locally coupled systems of many bistable elements and it
shown that the coupling can lead to the enhancement of
response@9–12#. Various types of Fokker-Planck equation
have been used to study the stochastic resonance the
cally.

On the other hand, various types of collective dynamics
globally coupled oscillators have been studied@13,14#. Glo-
bally coupled phase oscillators under external noises ca
studied with a nonlinear diffusion equation for the numb
density. The nonlinear diffusion equation is obtained fro
the mean field approximation of the Fokker-Planck equat
for theN oscillators, which is considered to be correct in t
globally coupled system in the limitN→` @13#. The nonlin-
ear diffusion equation for the globally coupled phase os
lators can be transformed into coupled nonlinear equat
for the Fourier amplitudes of the number density. The n
merical simulation of the coupled nonlinear equations for
Fourier modes is relatively easy. Various nonequilibriu
phase transitions were found in the globally coupled ph
oscillators using the numerical simulation of the coup
equations for the Fourier modes and their bifurcation ana
sis @15#.

In this paper, we study an extended model of the coup
phase oscillators, in which an external periodic force
added to the model studied in Ref.@15#. Each element may
exhibit stochastic resonance and stochastic synchroniza
however, we study dynamical behaviors of the order para
eter. The nonlinear diffusion equation is a deterministic eq
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tion, and the stochastic behaviors for each element are a
aged out in the description of the order parameter. T
resonant response and the synchronization to a periodic f
are more clearly shown in this deterministic system.

STOCHASTIC RESONANCE IN GLOBALLY COUPLED
BISTABLE SYSTEMS

At first, we consider a globally coupled bistable syste
Each phase oscillator evolves according to an equation

df

dt
52b sin 2f2c sinv0t sinf, ~1!

wheref is the phase of the oscillator,b and c are positive
constants, andv0 is the frequency of the periodic force
There are two stationary solutions,f50 andp. If the coef-
ficient of the second term on the right-hand side is not te
porally periodic asc sinv0t but constantc0 , the two solu-
tions are bistable foruc0u<2b. In that case, the dynamica
system has a potential functionU(f)52(b/2)cos 2f
2c0 cosf, and the solutionf50 has a lower potential for
c0.0 and a higher potential forc0,0 than the solutionf
5p. A model of a globally coupled system with a noise ter
is written as

df i

dt
52b sin 2f i2c sinv0t sinf i2

K

N

3(
j 51

N

sin~f i2f j !1j i , ~2!

whereN is the total number of elements, and the second te
on the right-hand side represents the periodically forc
term and the third term represents mutual coupling, and
last term represents Gaussian white noise characterized

^j i~ t !&50, ^j i~ t !j j~ t8!&52Dd i j d~ t2t8!,

whereD represents noise strength. The mean field treatm
holds exactly in the limit ofN→`. The normalized numbe
density defined by
©2002 The American Physical Society29-1
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n~f,t !5
1

N (
m

(
j

d~f j2f22pm!

obeys a nonlinear diffusion equation

]

]t
n~f,t !52

]

]f H 2b sin 2f2c sinv0t sinf

2KE
2p

p

df8 sin~f2f8!n~f8,t !J n~f,t !

1D
]2

]f2 n~f,t !. ~3!

The 2p-periodic functionn(f,t) can be expanded as

n~f,t !5
1

2p (
m52`

`

rm~ t !eimf.

The nonlinear equation~3! is rewritten with coupled ordinary
differential equations,

drm

dt
5m$~K/2!~r1rm212r21rm11!1~b/2!~rm222rm12!

1~c/2!sinv0t~rm212rm11!%2Dm2rm . ~4!

We have performed numerical simulation of Eq.~4! retaining
the first 50 modes with the Runge-Kutta method of time s
Dt50.0001. The order parameter is expressed as

s5~1/N!(
j 51

N

eif j5E
2p

p

dfeifn~f,t !5r21~ t !5r1* .

In this model, the order parameter takes a real value, tha
Im r1(t)50. Figure 1 displays three time evolutions ofs(t)
at D50.4, 0.57, and 1 forb50.2, c50.05,v050.3, andK
51. The order parameter is regularly oscillating with t
frequencyv0 of the external force. The average value of t
order parameter takes a nonzero value atD50.4 and zero at
D50.57 and 1. The amplitude of the periodic oscillation
maximum atD50.57. We have calculated the average v
ues^s& of the order parameter and the temporal fluctuatio
around the average value,̂@ds(t)#2&1/2, where ds(t)
5s(t)2^s&. The results are shown in Fig. 2. The avera
values of order parameters take nonzero values forD,Dc
;0.56. This is a kind of symmetry breaking phase transit
induced by noises. The amplitude of the periodic oscillat
of the order parameter takes a maximum near the phase
sition point. The response function to the periodic modu
tion becomes large in an intermediate range of the no
strength. This is interpreted as a kind of stochastic resona
in this globally coupled bistable system. A phase transition
a globally coupled bistable system without a periodic fo
and the enhancement of the susceptibility to a weak perio
force was discussed in Refs.@9#, @10#. We have found that a
kind of phase transition occurs even for nonzero amplitu
of periodic modulation.
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STOCHASTIC SYNCHRONIZATION IN GLOBALLY
COUPLED OSCILLATORS

Next, we consider a globally coupled oscillator syste
Each phase oscillator is assumed to obey an equation

df

dt
5v2~b1c sinv0t !sinf, ~5!

wheref is the phase of the oscillator,v, b, andc are positive
constants, andv0 is the frequency of the periodic force. I
c5b50, this equation describes a simple phase rota
since the solution isf5vt, where v is the natural fre-
quency. Ifc50, andbÞ0 but b,v, df/dt is not constant
but always takes a positive value, and this equation descr
still a phase rotator. The natural frequency of the oscillato
given byAv22b2. Whenc50 andb,v but b is close tov,
the oscillator behaves like the relaxation oscillation~it may

FIG. 1. Time evolutions ofs(t) by Eq. ~4! at ~a! D50.4, ~b!
D50.57, and~c! D51 for b50.2, c50.05,v050.3, andK51.
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FIG. 2. ~a! Average value^s& of the order
parameter and~b! the temporal fluctuations
^(ds)2&1/2 as a function ofD for b50.2, c
50.05,v050.3, andK51.
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be suitable to call it relaxation oscillation of phase!, since the
phase motion is clearly separated into fast motion and v
slow motion nearf5p/212np ~n is an integer!. On the
other hand, whenv,b andc50, the equation has a stab
stationary solution given byf5sin21(v/b) and all trajecto-
ries are attracted to the stable point. Ifc50, andb.v but b
is close tov, the system behaves like an excitable syste
since one-cycle rotation is excited by some small pertur
tion to the stationary state. The parameterb is a parameter
which determines a transition from an excitable system to
oscillatory system, andb5bc5v is the threshold value. The
parametric perturbationb1c sinv0t implies that the effec-
tive threshold value is periodically modulated. Illuminatio
can control the threshold in an experiment of light-sensit
Belousov-Zhabotinksy reaction. The noise entrainment w
observed by controlling the illumination@7#. The periodic
modulation in our model may be related to the perio
modulation of the threshold value in experimental system

A model of a globally coupled system with a noise term
written as

df i

dt
5v2~b1c sinv0t !sinf i2

K

N (
j 51

N

sin~f i2f j !1j i ,

~6!

whereN is the total number of elements, and the third te
represents mutual coupling, and the last term repres
Gaussian white noise characterized by

^j i~ t !&50, ^j i~ t !j j~ t8!&52Dd i j d~ t2t8!.

A coupled phase oscillator model similar to this equation w
studied by Kimet al. @16#. In their model, time delay was
further assumed. In their system with time delay, there
multistable states, i.e., fast and slow synchronized states
a desynchronized state. They studied noise induced tra
tions among the multistable states in one oscillator sys
and a coupled system of ten oscillators. We do not cons
such time delay effect and study the stochastic synchron
tion using a nonlinear diffusion equation for a coupled s
tem in the limit N→`. The normalized number densit
obeys
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D50.08, and~c! D50.12 for b51, c50.02, v51.005,v050.3,
andK51.
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FIG. 4. ~a! Frequencyv̄ of the order parameter oscillation vsD for b51, c50.02,v51.005,v050.3, andK51. ~b! Fourier amplitude
A5(1/T)u*0

Tdts(t)exp(2iv0t)u vs D. ~c! Phase diagram for the entrainment inK-D plane. The entrainment is observed in the parame
range surrounded by two curves.
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]t
n~f,t !52

]

]f H v2~b1c sinv0t !sinf

2KE
2p

p

df8 sin~f2f8!n~f8,t !J n~f,t !

1D
]2

]f2 n~f,t !. ~7!

The corresponding coupled ordinary differential equatio
are written as

drm

dt
5m$~K/2!~r1rm212r21rm11!1~b

1c sinv0t !/2~rm212rm11!%2~ imv1Dm2!rm .

~8!

We have performed numerical simulation of Eq.~8! retaining
the first 50 modes with the Runge-Kutta method of time s
Dt50.0005. In this model, the order parameters5r21 is a
complex variable. Figure 3 displays three time evolutions
Res(t) at D50.04, 0.08, and 0.12 forv51.005,K51, v0
50.3, andc50.02. The order parameter is entrained to
external periodic force atD50.08. However, the motion o
the order parameter is not completely entrained to the p
odic force atD50.04 and 0.12, and quasiperiodic motio
appear. Figure 4~a! displays the frequencyv̄ of the motion of
05612
s

p

f

e
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the order parameter as a function ofD for v51.005,K51,
b51, v050.3, andc50.02. The frequency was calculate
from the rotation number of„Res(t),Im s(t)… around the ori-
gin ~0, 0!. The frequency of the order parameter increa
with the noise strengthD. It can be understood from th
dynamical behavior of each oscillator. Each oscillator b
haves like the relaxation oscillation and the phase mot
becomes slow nearf5p/212np when D50, since v
;b. An effect of noises is to make the regular slow moti
randomly faster, and then the average frequency incre
with the noise strength. The periodic modulation is furth
applied. The frequency entrainment is observed betw
0.058,D,0.094. This is a kind of the stochastic synchron
zation, although the motion of the order parameter is
stochastic. Figure 4~b! displays the Fourier amplitude of th
order parameter motion with frequencyv0 , that is,
(1/T)u*0

Tdts(t)exp(2iv0t)u. The Fourier amplitude takes
maximum in the parameter range where the stochastic
chronization is observed. Figure 4~c! displays a paramete
region in theK-D parameter space, in which the synchron
zation is observed. This phase diagram seems to be the
nold tongues discussed in@4–6#, however, the ordinate is no
the amplitudec of the periodic forcing but the coupling con
stant K, so the meaning is different. For a fixed value
noise strength, the coupling constant also needs to tak
intermediate value for the stochastic synchronization to
pear, as shown in this figure. Too large coupling const
makes the distribution of the number density too narrow, a
noise effects are effectively reduced.
FIG. 5. ~a! Frequencyv̄ of the order param-
eter oscillation vsD and ~b! Fourier amplitude
A5(1/T)u*0

Tdts(t)exp(2iv0t)u vs D for b51, c
50.02,v50.97,v050.3, andK52.
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Even for a parameter rangev,b2c, in which each el-
emental system is purely excitable. However, noises ind
phase slips and the oscillation is observed on an aver
When the periodic force is further applied, the stochas
synchronization can occur. We have performed a numer
simulation forv50.97,b51, K52, v050.3, andc50.02.
Figure 5~a! displays the frequency of the motion of the ord
parameter as a function ofD. The frequency entrainment i
observed for 0.245,D,0.305. Figure 5~b! displays the Fou-
rier amplitude of the order parameter motion with frequen
v050.3. The Fourier amplitude also has a maximum in
intermediate value of noise strength.

SUMMARY

To summarize, we have proposed globally coupled ph
oscillator models and performed numerical simulations
the corresponding nonlinear diffusion equations for the nu
ber density. The response to the periodic force becomes l
in an intermediate range of noise strength. It can be in
preted as a stochastic resonance or a stochastic synchro
tion, although the motion of the order parameter is regu
e
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We have shown numerical results for parametrically p
turbed system, but we have also studied an additively p
turbed model,

df i

dt
5v2b sinf i1c sinv0t2

K

N (
j 51

N

sin~f i2f j !1j i ,

and another type of forced model,

df i

dt
5v2b sinf i2c sin~f i2v0t !2

K

N

3(
j 51

N

sin~f i2f j !1j i .

We have observed similar stochastic synchronization als
these systems. It does not seem to depend on the det
form of periodic forcing. The stochastic synchronization m
be found in many systems driven by noises and perio
forcing, if the parameter for each element is near a transi
point between an excitable state and an oscillatory state
v.
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